Identifying DIF for Latent Classes with the Dirichlet Process
نویسنده
چکیده
of the Dissertation Identifying DIF for Latent Classes with the Dirichlet Process by Miles Satori Chen Doctor of Philosophy in Statistics University of California, Los Angeles, 2015 Professor Peter Bentler, Chair In Item Response Theory (IRT), Differential Item Functioning (DIF) occurs when individuals who have the same ability, but belong to different groups, have different probabilities of answering an item correctly. Traditional DIF methods require that the grouping variable be observable, like gender or ethnicity. Latent class IRT, on the other hand, allows for the fitting of IRT models where the grouping variable is unobserved. Current latent class IRT methods (e.g. mixed Rasch models) require that the number of mixing components be defined in the estimation process. This dissertation proposes two latent class models, each with a Markov chain Monte Carlo algorithm, that can be used to fit IRT data without the need to specify the number of latent classes. The models employ a Dirichlet process or stick-breaking prior to allow an undefined number of mixing components to be fit. Simulation results indicate that the models can correctly identify the latent classes without the need to specify how many unobserved groups there are. The power to correctly detect multiple latent classes, however, is quite low especially if the amount of DIF is small or if only a few items in a test exhibit DIF. The results of the proposed models are compared to those of the mixed Rasch model.
منابع مشابه
Title of Dissertation: EXAMINING DIFFERENTIAL ITEM FUNCTIONING FROM A LATENT CLASS PERSPECTIVE
Title of Dissertation: EXAMINING DIFFERENTIAL ITEM FUNCTIONING FROM A LATENT CLASS PERSPECTIVE Karen Samuelsen, Doctor of Philosophy, 2005 Dissertation directed by: C. Mitchell Dayton Department of Measurement, Statistics and Evaluation Current approaches for studying differential item functioning (DIF) using manifest groups are problematic since these groups are treated as homogeneous in natur...
متن کاملRasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications
Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest DIF tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even...
متن کاملرفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA
Word sense disambiguation is the task of identifying the correct sense for the word in a given context among a finite set of possible sense. In this paper a model for farsi word sense disambiguation is presented. The model use two group of features: first, all word and stop words around target word and topic models as second features. We extract topics from a farsi corpus with Latent Dirichlet ...
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملBayesian Analysis of Ordinal Survey Data Using the Dirichlet Process to Account for Respondent Personality Traits
This paper presents a Bayesian latent variable model used to analyze ordinal response survey data by taking into account the characteristics of respondents. The ordinal response data are viewed as multivariate responses arising from continuous latent variables with known cut-points. Each respondent is characterized by two parameters that have a Dirichlet process as their joint prior distributio...
متن کامل